84 research outputs found

    Abbreviated MR Protocols in Prostate MRI

    Full text link
    Prostate MRI is an integral part of the clinical work-up in biopsy-naïve patients with suspected prostate cancer, and its use has been increasing steadily over the last years. To further its general availability and the number of men benefitting from it and to reduce the costs associated with MR, several approaches have been developed to shorten examination times, e.g., by focusing on sequences that provide the most useful information, employing new technological achievements, or improving the workflow in the MR suite. This review highlights these approaches; discusses their implications, advantages, and disadvantages; and serves as a starting point whenever an abbreviated prostate MRI protocol is being considered for implementation in clinical routine

    Bilateral Ovarian Endometriomas: A Case Report

    Full text link

    68Ga-PSMA-11 PET/MR Can Be False Positive in Normal Prostatic Tissue

    Full text link
    Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein expressed in the cytosol of normal prostate tissue and highly overexpressed on the membrane of prostate cancer, therefore increasingly used to image prostate cancer. We report a case of a 65-year-old man with two focal PSMA-positive areas on a Ga-PSMA-11 PET/MR, one corresponding to a prostate carcinoma (Gleason score 4 + 3) and another region without any evidence of malignancy, but with corresponding high PSMA-expression on immunohistochemistry

    Index lesion contouring on prostate MRI for targeted MRI/US fusion biopsy - Evaluation of mismatch between radiologists and urologists

    Full text link
    PURPOSE: Mistargeting of focal lesions due to inaccurate segmentations can lead to false-negative findings on MRI-guided targeted biopsies. The purpose of this retrospective study was to examine inter-reader agreement of prostate index lesion segmentations from actual biopsy data between urologists and radiologists. METHOD: Consecutive patients undergoing transperineal MRI-targeted prostate biopsy for PI-RADS 3-5 lesions between January 2020 and December 2021 were included. Agreement between segmentations on T2w-images between urologists and radiologists was assessed with Dice similarity coefficient (DSC) and 95 % Hausdorff distance (95 % HD). Differences in similarity scores were compared using Wilcoxon test. Differences depending on lesion features (size, zonal location, PI-RADS scores, lesion distinctness) were tested with Mann-Whitney U test. Correlation with prostate signal-intensity homogeneity score (PSHS) and lesion size was tested with Spearman's rank correlation. RESULTS: Ninety-three patients (mean age 64.9 ± 7.1y, median serum PSA 6.5 [4.33-10.00]) were included. Mean similarity scores were statistically significantly lower between urologists and radiologists compared to radiologists only (DSC 0.41 ± 0.24 vs. 0.59 ± 0.23, p < 0.01; 95 %HD 6.38 ± 5.45 mm vs. 4.47 ± 4.12 mm, p < 0.01). There was a moderate and strong positive correlation between DSC scores and lesion size for segmentations from urologists and radiologists (ρ = 0.331, p = 0.002) and radiologists only (ρ = 0.501, p < 0.001). Similarity scores were worse in lesions ≤ 10 mm while other lesion features did not significantly influence similarity scores. CONCLUSION: There is significant mismatch of prostate index lesion segmentations between urologists and radiologists. Segmentation agreement positively correlates with lesion size. PI-RADS scores, zonal location, lesion distinctness, and PSHS show no significant impact on segmentation agreement. These findings could underpin benefits of perilesional biopsies

    Variability of Manual Segmentation of the Prostate in Axial T2-weighted MRI: A Multi-Reader Study

    Get PDF
    Purpose To evaluate the interreader variability in prostate and seminal vesicle (SV) segmentation on T2w MRI. Methods Six readers segmented the peripheral zone (PZ), transitional zone (TZ) and SV slice-wise on axial T2w prostate MRI examinations of n = 80 patients. Twenty different similarity scores, including dice score (DS), Hausdorff distance (HD) and volumetric similarity coefficient (VS), were computed with the VISCERAL EvaluateSegmentation software for all structures combined and separately for the whole gland (WG = PZ + TZ), TZ and SV. Differences between base, midgland and apex were evaluated with DS slice-wise. Descriptive statistics for similarity scores were computed. Wilcoxon testing to evaluate differences of DS, HD and VS was performed. Results Overall segmentation variability was good with a mean DS of 0.859 (±SD = 0.0542), HD of 36.6 (±34.9 voxels) and VS of 0.926 (±0.065). The WG showed a DS, HD and VS of 0.738 (±0.144), 36.2 (±35.6 vx) and 0.853 (±0.143), respectively. The TZ showed generally lower variability with a DS of 0.738 (±0.144), HD of 24.8 (±16 vx) and VS of 0.908 (±0.126). The lowest variability was found for the SV with DS of 0.884 (±0.0407), HD of 17 (±10.9 vx) and VS of 0.936 (±0.0509). We found a markedly lower DS of the segmentations in the apex (0.85 ± 0.12) compared to the base (0.87 ± 0.10, p < 0.01) and the midgland (0.89 ± 0.10, p < 0.001). Conclusions We report baseline values for interreader variability of prostate and SV segmentation on T2w MRI. Variability was highest in the apex, lower in the base, and lowest in the midgland

    Prediction of pelvic lymph node metastases and PSMA PET positive pelvic lymph nodes with multiparametric MRI and clinical information in primary staging of prostate cancer

    Full text link
    PURPOSE To compare the accuracy of multiparametric MRI (mpMRI), 68^{68}Ga-PSMA PET and the Briganti 2019 nomogram in the prediction of metastatic pelvic lymph nodes (PLN) in prostate cancer, to assess the accuracy of mpMRI and the Briganti nomogram in prediction of PET positive PLN and to investigate the added value of quantitative mpMRI parameters to the Briganti nomogram. METHOD This retrospective IRB-approved study included 41 patients with prostate cancer undergoing mpMRI and 68^{68}Ga-PSMA PET/CT or MR prior to prostatectomy and pelvic lymph node dissection. A board-certified radiologist assessed the index lesion on diffusion-weighted (Apparent Diffusion Coefficient, ADC; mean/volume), T2-weighted (capsular contact length, lesion volume/maximal diameters) and contrast-enhanced (iAUC, kep_{ep}, Ktrans^{trans}, ve_{e}) sequences. The probability for metastatic pelvic lymph nodes was calculated using the Briganti 2019 nomogram. PET examinations were evaluated by two board-certified nuclear medicine physicians. RESULTS The Briganti 2019 nomogram performed superiorly (AUC: 0.89) compared to quantitative mpMRI parameters (AUCs: 0.47-0.73) and 68^{68}Ga-PSMA-11 PET (AUC: 0.82) in the prediction of PLN metastases and superiorly (AUC: 0.77) in the prediction of PSMA PET positive PLN compared to MRI parameters (AUCs: 0.49-0.73). The addition of mean ADC and ADC volume from mpMRI improved the Briganti model by a fraction of new information of 0.21. CONCLUSIONS The Briganti 2019 nomogram performed superiorly in the prediction of metastatic and PSMA PET positive PLN, but the addition of parameters from mpMRI can further improve its accuracy. The combined model could be used to stratify patients requiring ePLND or PSMA PET

    Diagnostic Accuracy of a MR Protocol Acquired with and without Endorectal Coil for Detection of Prostate Cancer: A Multicenter Study

    Full text link
    Introduction The purpose of this study was to compare diagnostic accuracy of a prostate multiparametric magnetic resonance imaging (mpMRI) protocol for detection of prostate cancer between images acquired with and without en-dorectal coil (ERC). Materials This study was approved by the regional ethics committee. Between 2014 and 2015, 33 patients (median age 51.3 years; range 42.1-77.3 years) who underwent prostate-MRI at 3T scanners at 2 different institutions, acquired with (mpMRI) and without (mpMRI) ERC and who received radical prostatectomy, were included in this retrospective study. Two expert readers (R1, R2) attributed a PI-RADS version 2 score for the most suspect (i. e. index) lesion for mpMRI and mpMRI. Sensitivity and positive predictive value for detection of index lesions were assessed using 2 × 2 contingency tables. Differences between groups were tested using the McNemar test. Whole-mount histopathology served as reference standard. Results On a quadrant-basis cumulative sensitivity ranged between 0.61-0.67 and 0.76-0.88 for mpMRI and mpMRI protocols, respectively (p > 0.05). Cumulative positive predictive value ranged between 0.80-0.81 and 0.89-0.91 for mpMRI and mpMRI protocols, respectively. The differences were not statistically significant for R1 (p = 0.267) or R2 (p = 0.508). Conclusion Our results suggest that there may be no significant differences for detection of prostate cancer between images acquired with and without an ERC

    External Validation and Comparison of Prostate Cancer Risk Calculators Incorporating Multiparametric Magnetic Resonance Imaging for Prediction of Clinically Significant Prostate Cancer

    Full text link
    PURPOSE: To externally validate recently published prostate cancer risk calculators (PCa-RCs) incorporating multiparametric magnetic resonance imaging (mpMRI) for the prediction of clinically significant prostate cancer (csPCa) and compare their performance to mpMRI-naïve PCa-RCs. MATERIAL AND METHODS: Men without previous PCa diagnosis undergoing transperineal template saturation prostate biopsy with fusion-guided targeted biopsy between 11/2014 and 03/2018 in our academic tertiary referral center were identified. Any Gleason pattern ≥4 was defined to be csPCa. Predictors (age, PSA, DRE, prostate volume, family history, previous prostate biopsy and highest region of interest according to PIRADS) were retrospectively collected. Four mpMRI-PCa-RCs and two mpMRI-naïve PCa-RCs were evaluated for their discrimination, calibration and clinical net benefit using a ROC analysis, calibration plots and a decision curve analysis, respectively. RESULTS: Out of 468 men, 193 (41%) were diagnosed with csPCa. Three mpMRI-PCa-RCs showed similar discrimination with area-underneath-the-receiver-operating-characteristic-curves (AUC) from 0.83 to 0.85, which was significantly higher than the other PCa-RCs (AUCs: 0.69-0.74). Calibration-in-the-large showed minimal deviation from the true amount of csPCa by 2% for two mpMRI-PCa-RCs, while the other PCa-RCs showed worse calibration (11-27%). A clinical net benefit could only be observed for three mpMRI-PCa-RCs at biopsy thresholds ≥15%, while none of the six investigated PCa-RCs demonstrated clinical utility against a biopsy all strategy at thresholds <15%. CONCLUSIONS: Performance of the mpMRI-PCa-RCs varies, but they generally outperform mpMRI-naïve PCa-RCs in regard to discrimination, calibration and clinical usefulness. External validation in other biopsy settings is highly encouraged
    corecore